New architectures for smart cards : the OCEAN approach

Olivier Caron, Vincent Cordonnier, Philippe Durif, Georges Grimonprez.

RD2P - Hopital Calmette - Rue du Professeur J. Leclerc - 59037 Lille Cedex
Tél: (33) 20 44 60 46 - Fax: (33) 20 44 60 45 - Emait: olivier@rd2p.lifl. fr

Abstract : There are today many and important reasons for
giving future smart card generation new processors. This
requirement is the result of more sophisticated applications
that have to respect specific constraints such as response
time and memory capacities.

In a smart card, hardware and software are closely
interdependent because the code is stored in a rom at the
production level. Thus, both hardware and software must be
realized in an unique design process.

OCEAN project (Outils de Conception et d Evalution
d’ Architectures Nouvelles) has been proposed to respond to
that constraint. It bring the possibility to obtain a global
evaluation of the chip and its embedded softiware. The
project comprise the OCEAN Hardware description
language, a specific C compiler to produce the application,
a generic translator and an evaluation tool.

OCEAN is a part of the ESPRIT CASCADE project.

1. The existing smart cards

The smart card domain is very specific and demanding.
So, we present in this section the different hardware and
software characteristics. These characteristics imply new
ways of smart card application design.

11 Hardware characteristics

The silicon component called the micro-module (see

figure 1 on page 1) contains the following elements :

¢ The microprocessor.
Used microprocessors are relatively old ones (Intel
8051, Motorola 6805, SGS Thomson ST 9). These proc-
essors have been choose for their size. There have not
been specifically designed for the smart card applica-
tions.

e The ROM memory (Read Only Memory).
When receiving the power supply, the microprocessor
executes an unique program which is stored in its ROM
memory. This program is called the MASK or the ROM
CODE and looks like both the operating system and the
application code.

0-8186-6315-4/94 $04.00 © 1994 IEEE

148

¢ The RAM memory.

This memory is both used for the variables of the mask

and input/output buffer.
¢ The EPROM memory (Programmable Read Only Mem-

ory) or EEPROM memory (Electrically Erasable Pro-
grammable Read Only Memory).

This memory is used for the permanent data manage-

ment.
¢ Security unit.

it’s a hardware security unit which is checking the

power supply and, in some cases, making a hardware

protection of the different memories.

These components communicate with each other
through an internal 8 bits bus. The extemal access is per-
formed through a serial device equivalent to a serial asyn-
chronous port. Extenal services such as clock, power
supply (etc...) are also available on the card connector.

FIGURE 1. Architecture of a micro-module

Processor

Intemnal Bus
F 3 Y 4 4 A
y y B A y
PIOM | 1nput Security
RA\\HROM Boor] Output |> Unit

Memory capacities are very small. The following table
show typical capacities for a “big smart card” :

TABLE 1. memory capacities

10 K bytes

256 bytes 8 Kbytes

L2 Software characteristics
The used masks must have the following functions :
1. Operating system functions.

The mask must manage the input/output (protocol,...),
EEPROM memory dynamic management.

2. Security.
To ensure that the card and receiving device are com-
municating with each other, rather than with a fraudu-
lent device inserted in the communication path, it is
possible to use cryptographic algorithm.

3. data management

The mask has in charge of the structure of the different
data stored in EEPROM [19] [13].

L3 Consequences
The above characteristics must be taken into account :

¢ The mask must be guaranteed as true to the specifica-
tions of the application because it is stored into a ROM.
Removing a single default implies the destruction of all
the smart cards.

¢ Software design decisions are determined by hardware
characteristics. The first constraint is a static one : the
mask must be compact (the ROM memory capacity is
about 10 K bytes). The second constraint is a dynamic
one : applications must optimise management of these
variables that are stored in either registers or RAM
memory (the RAM memory capacity is about only 256
bytes in the best case).

e At the moment, smart card applications are written in
assembly language for memory size reasons and per-
formance reasons.

¢ According to the memory capacities, the operating sys-
tem is merged into the application software.

The future smart cards

Because they have to face increasing requirement and
functionalities (Encrypted T.V., new generation banking
cards, multiapplicative cards,...), future smart cards require
new ways of conceptions. Moreover, future smart cards
accentuate the physical inadequacies of the available tools
[9] [10]. After a brief presentation of future smart card
applications, let us present the consequences on hardware
and software.

2.1 Software evolutions

The needs for new functions in the following domains

are [12] :

1. Personal identification security
The usual technic uses a number called the PIN (Per-
sonal Identification Number) assigned to a cardholder
which is used by the cardholder to verify to a system
that he can legitimately use a card. Identification,
through the use of a PIN, can only prove that someone
knows the key to the system. It does not prove that the
person using the card is the authorised cardholder. For
example, somebody who has difficulty remembering the
PIN, and has written it on the card, provides all that is
necessary for the card thief to gain access to the system.

2.

149

The use of biometric technics is a good alternative to
this problem (fingerprint, dynamic signature, voice rec-
ognition, retinal pattem,...).

2. The operating system
The need for model of multi-applicative smart cards
implies new definition of operating system for smart
cards [21].

3. Integration in information system
Future smart cards as full partners of the information
system, will be imply in the network configuration and
will be able to lead transactions [16].

2.2 Hardware consequences

These software evolutions enable to define a possible
hardware evolution [11] [12] [22] at two different levels :

¢ Evolution of the microprocessor because some applica-
tions like cryptographic or biometric applications needs
a lot of power of calculus.

* Evolution of the microprocessor environment. Accord-
ing to future applications (Operating systems, biomet-
ric, ...), it becomes necessary to put the following new
elements in a smart card :

- an interrupt system.

- input/output ports.

- Memory Management unit (MMU) or Memory Pro-
tection unit (MPU).

- coprocessors (one example: a cryptographic unit).

- atimer.

The OCEAN system

According the software and hardware evolution, there is
a need for new ways of conception. The new design will be
able to evaluate the appropriateness between the software
and the hardware. The high constraints of a card make that
step in the design process very important. Furthermore, the
increase of hardware possibilities make that the choice of
the best appropriateness (see figure 2 on page 2) will be an
important step in the design process. This step will be able
to simulate such innovations and then to evaluate the inter-
est according the given software.

3.

FIGURE 2. research of the appropriateness between
hardware and software solutions

Software
rotocol
iometric

cryptographic

Hardware

contact card
contactless card
processor type
Inemories
nterrupt system

CBtocestor

data structure
expert system

The actual system (the smart card applications are writ-
ten in assembly language) become obsolete. It is now

imperative to have new methodologies of conception and

adequate tools to design an evoluate smart card application

according to a given hardware [5] [11].

3.1 The O.C.E.A.N. approach
We propose the O.C.E.A.N. approach (Outils de Con-

ception et d’Evaluation d’Architectures Nouvelles) which

provide different tools. These tools allow both the concep-
tion and the evaluation of smart cards (both mask and

architecture). According to the different constraints of a

card, the O.C.E.A.N. system permit to reach the three fol-

lowing goals :

1. The conception of a mask.

The design tools of a mask must facilitate the writing of

an operating system and the quality of the generated

code (the mask is stored in ROM).

2. The evaluation of the micromodule.

It is very important to simulate a card in the real condi-

tions.

3. The evaluation of the appropriateness between the mask

and the micromodule.
This step is very specific at the world of smart card. So,
there is an additional step in the process which serves to
test the possibility of implementation on the real card
chip. The available hardware must be closely connected
with this program, by just using the minimum of
resources (Registers, RAM, ROM).

One of the great interest of the OCEAN system is that
these three goals are not considered separately.

The three goals are in fact closely connected. For exam-
ple, the results of the appropriateness between the mask and
the micromodule (goal 3) may question either the mask
(goal 1) or the micromodule (goal 2). So, to find the best
result, we need to have an unique structure which join the
three objectives together. The following figure (see figure 3
on page 3) show the principle of the OCEAN system.

In this figure, it appears an important point : the interac-
tive side of this structure. The design process is in fact rela-
tively simple. The first step consist in to define three
statements : the mask, the model of programming and the
architecture of the micromodule. The second step consist in
the simulation of the mask in the real hardware conditions
defined by the described micromodule. The third step con-
sist in to provide the different measurements to evaluate the
software/hardware set. These measurements can lead to two
kinds of decisions :

1. The measurements show that we succeeded in all the
goals : the execution, the response time, ..., size of the
code are correct. In that case, the design process is fin-
ished.

2. The results show that the software/hardware set is either
impossible (for example, the execution of the mask

150

need niore RAM memory than available) or the differ-
ent goals are not correctly reached (bad response time,
bad EEPROM memory management,...). In that case,
we need update one or more of the three statements : the
mask, the model of programming or the architecture.

FIGURE 3. Principle of OCEAN

Model Architecture
of Specification
prog. (MMA)

(MP)

OCEAN
compiler

Evaluation Chain

Evaluation, modification

According to the high constraints of a card, it appears
that the research of the best appropriateness implies a lot of
modifications of the three statements. That’s why, the main
characteristics of the OCEAN system are :

* easy to modify the software or the hardware statements.

® easy to generate new simulations and provide new eval-
uations from any modification.

* quality of the simulation which allow to the designer to
evaluate precise critical sections of the mask.

* precision of the evaluations which allow to the designer
to find easily the different problems.

All these measurements require a chain of tools going
from the C description of the application to the delivery of
the evaluation. The observation of the results can lead to
three kinds of decisions : to update the mask (the program
stored in ROM), the model of programming (MP) and the
Micro-Module Architecture (MMA) statements.

By model of programming we mean the set on state-
ments about the software eligible role of registers, the per-
manent allocation of the resources and more generally the
programming environment [8].

Designing the MMA implies:

¢ The instruction set

¢ Registers which are used by these instructions
 Pipe-line structure that can be managed by the compiler.
¢ The different memories.

¢ the interrupt system.

When the MMA and MP statements have been changed
the four last modules of the evaluation chain have to be
redefined. The process will be repeated until results look
satisfactory. Thanks to OCEAN structure (see figure 3), the
designer can only concentrate on the mask, the MP and the
MMA statements. From these statements, OCEAN com-
piler entirely generate a new evaluation chain described
below.

The evaluation chain comprises the following modules:
a C compiler which generates an intermediate code inde-
pendent of the target machine, a high level optimiser work-
ing on that code, a translator from the intermediate code to
the code of the target machine, this module needs to receive
a precise definition of the MP and the instruction set of the
target machine, a target machine oriented optimiser with
two roles : to optimise the code according to the instruction
set and the pipe-line management : instruction reordering,
delayed branch, an assembler which has to provide static
measurements and a simulator which has to provide
dynamic measurements.

The C compiler is a specific one called the C_Card
compiler. This compiler generates a code for a virtual
machine called QUAD. [7] and [8] describe the C_Card
compiler and the used methodology to translate the QUAD
code to the code of the target machine and it will not be dis-
cussed in this paper.

3.2 Definition of the architecture of the
MicroModule (MMA)

The OCEAN compiler produces the evaluations tools
for the target machine. It receives as an input a description
of the MMA for this target machine. The description lan-
guage is an original one. It has been especially defined for
the OCEAN project. A complete description of that lan-
guage is available in [5]. The great interests of that struc-
ture are :

e A clear description of the architecture of the micro-
module. The high level side of that language allow to
describe easily the different elements of a micromodule.

* easy to generate a new evaluation chain. The designer
can easily modify one characteristic of the micromod-
ule. It is important for the interactive side of the
OCEAN system.

e to define the different needs. The several simulations
with different architectures of a micromodule allow to
define the different needs (performances, size of mem-
OTy Iesources,...).

151

3.2.1 The O.C.E.AN. language and the CHDL
languages

A lot of hardware description languages already exist :
the CHDL languages (Computer Hardware Description
Language). Let us cite the LIDO language [2] and the
VHDL language [20] [18]. These languages are located at
Register Transfer Level, they offers the possibility to define
an architecture at a functional level and at a structural
level more near the hardware realisation [3].

We consider the OCEAN language like a prototype lan-
guage imposed by the constraints of a card. This language
is closely connected with the software applications and the
model of programming. This language do not replace the
CHDL languages. The use of this language allow to define
some important hardware characteristics.

3.2.2 The characteristics of the O.C.E.A.N.
language
The following characteristics must be taken account
into the OCEAN language : a simple description, the possi-
bility to describe RISC processors, the description of the
processor environment and the generation of simulation
tools.

According to these characteristics, the OCEAN lan-
guage must define the architecture of instruction set (regis-
ters, instruction format, instruction semantic), the structure
of the pipeline, the memory resources and the interrupts.

The following example illustrates this language with a
RISC machine : the MIPS architecture.

3.2.3 Register Description.

Most of the RISC architecture use two families of regis-
ters : basic registers and windows of registers. The OCEAN
language supports these two possibilities. The PC register
must be specified.

TABLE 2. register description
Architecture 32 bits Machine® mips:32;
general registers Registers
:RO..R31, R[32]:32,H:32, B:32,
mul/div registers :H,B. | IP:32;
instruction pointer : IP. | PCisIP;

a. KeyWords are in bold

3.2.4 Pipe-line description.
According to the type of the instruction the pipe-line
will decompose the execution in various sets of different

steps. Every step can comprise one or more elementary
actions.

TABLE 3.

pipe-line description

UAL instruction : Pipeline UAL :
stage 1 : Read Instruc- | (Read_Inst),
tion

stage 2 : Decode, Read | (Dec_Inst Read_Reg
Registers, increment Inc_pc),

pc

stage 3 : execute (Exec_Inst),
stage 4 : nothing O,

stage 5 : Write Result (Write_Reg) ;
Jump Instruction : Pipeline Branch :
stagel : Read Instruc- | (Read_Inst),
tion

stage 2 : Decode, Read | (Dec_Inst

Registers, compute Read_Reg Inc_pc),

branch adr

stage 3 : Jump (Update_pc),
stage 4 : nothing O,

stage b : nothing ON

Load Instruction :... | Pipeline Load :...

3.2.5 Instruction format description
This section describes the various possible types of
operands for each format and their internal code. Registers
are specified as used for input or output.
Instruction Formats MIPS :
Operate 1 Format
6 5

5 b 6
[Opcode] 81 [S2 | D | vl | code |
Operate_Imm Format
[Opeode] 81 | D | imm]
disp]

Branchl Format
| Opeode] s1 |

Branch2 Format
[Opeode]

OCEAN description :

Format Operatel : (Register out D Register in S1,52

Value v1,code)
(opcode:6 S1:5 S2:5 D:5 v1:5 code:3) ,

Format Operate_Imm : (Register out D Register in
S1 Value imm)

(opcode:6 S1:5 D:5 imm:16) ,
Format Branch1 : (Register in S1,S2 Offset disp)

D_|

disp |

152

(opcode:6 S1:5 S2:5 disp:16),
Format Branch? : (Offset disp)
(opcode:6 disp:26) ;

3.2.6 Instruction description

This section links for every instructions the descriptions
about format, pipe-line management and contains a seman-
tic description of the activity of the instruction. This
description is written in C.

TABLE 4. Instruction Description
Instruction ADD, Instruction ADD :
OPeratel Format, (Operatel C_ADD
opcode : C_ADD, Pipe- | UAL),
line type : UAL begin_c
AluOut = S1+S2;
end_c;

3.2.7 Memory description
This section define the different used memories in the

micromodule. More precisely, this section describes :

* The type of the different used memories (ROM,
RAM,..)

¢ The size of each memory.

¢ The available address for each memory.

¢ The access rights for each memory (read, write, ...).

The following table give an example of a memory
description :

TABLE 5. Memory description

MEMORY ROM :
($0000 to $27FF) ,
(READ_INST READ_MEM) ;
MEMORY EEPROM :
($6000 to $7ff : 1),
(READ_INST READ_MEM WRITE_MEM);
MEMORY RAM :
{ $FECO to $FFBF),
(READ_MEM WRITE_MEM) ;
The available elementary actions (see “Pipe-line
description.” on page 4) are specified for each memory.
Thus, for this example, it is impossible to have an executa-

ble instruction in the RAM memory (the elementary action
READ_INST is not specified for this memory).

3.2.8 Interrupt system description

This section allow to specify the different interrupt-
s.This section enumerate the name, the type (direct or indi-
rect) and the address for each interrupt. The designer must
write, at different sections, the functioning of each interrup-
t.For this, OCEAN provides different standard variables
and procedures to manage these interrupts.

Let us show with three types of interrupt the OCEAN
description :
* Anintemnal interrupt : zero divide.
¢ A hardware interrupt : a timer.
* A software interrupt called user.

TABLE 6. Interrupt system Description
zero_divide interrupt INTERRUPT zero_di-
effective address is vide :
$2020. (DIRECT : $2020) ;
timer interrupt indi- INTERRUPT timer :
rect address : $2008. (INDIRECT : $2008) ;
user interrupt INTERRUPT user :
indirect address (INDIRECT : $200C)
:$200C. .

The interrupt conditions are tested by the following
ocean standard function :

int test_interrupt(int test, char name[MAX NAME]) ;

This function start the interrupt called name if and only
if the condition called fest is true. This function return zero
if the interrupt is not active.

In our example of internal interrupt zero_divide, the
description of the DIV instruction manage this interrupt
like this :

~INSTRUCTION DIV :
(Inst_Reg 10 DivPipe),
begin_c
if (ltest_interrupt(rs2 == 0,"zero_divide"))
AluOut = rs1/rs2 ;
end_c;

Software interrupts are also described in the instruction
section. Let us show with the interrupt called user :

INSTRUCTION INT :
{ Inst_im 81 Ual},
begin_c
if (im == 0x10) test_interrupt{TRUE,"user”) ;

153

The management of hardware interrupt is realized by an
additional elementary action called TEST INTERRUPT.
This action is executed at every machine cycle. This section
must be written in C language in the last section of descrip-
tion of a micromodule : the section of function and phase
description. Let us show with the timer interrupt :

~ PHASE TEST_INTERRUPT :
begin_c
test_interrupt(timer_test'(),"timer”) ;
end _c;

The management of interrupt mask is realised by these
two following functions :

int get_interrupt (char name[MAX_NAME]) ;
¢ void set_interrupt (int state, char name[MAX_US])) ;

get_interrupt return the value of the interrupt mask of
the name interrupt, set_interrupt set this mask at state
value. Thanks to these two functions, it is possible to simu-
late the different priority of each instructions.

3.3 The simulation module

The OCEAN compiler produces two other modules: An
assembler with extra capabilities for the static analysis.

A smart card simulator with the usual facilities such as
step by step mode, break points, trace mode. The simulator
also provides tools for the dynamic analysis.

The simulation process provides the following informa-
tion :

e Memory size for the used ROM and RAM.

¢ Number of used registers.

+ Elapsed time for executing the application code. As
there is no real time definition of the target machine, the
result is only available as a number of elementary
machine cycles. When a pipe-line exists, a cycle must
be understood as the time required for one stage. It is
quite easy to convert this information to a real execution
time giving the clock rate of the target machine.

e Number of pipe-line suspension cycles and for each of
them a description of the cause (Conflict on resources,
conflicts on control, conflicts on data: read after write,

write after write,...).
4. Illustration

We illustrate the OCEAN system with a short example.
We have described, in the OCEAN language, a micro-mod-
ule based on a 32 bits RISC machine : the DLX machine

1. test_timer() is described in C language.

which is presented in [17]. This machine is well representa-
tive of the last generation of RISC architectures. The appli-
cation code is an algorithm of photo compression [1] which
require a lot of calculus power.

The memory capacities of the described micro-module
are :
* ROM: 10K bytes
¢ RAM: 256 bytes
e EEPROM: 8 K bytes

We realise a first study with the following model of pro-
gramming :

TABLE 7. study 1 : model of programming
RIO} =0
RI[1]..R[24] Variables of the C_Card program
R[25] Return value

R[26]..R[28]

Temporary variables

R[29]

Stack pointer

R[30]

Base pointer

R[31]

Return address

OCEAN evaluations revealed the following observa-
tions :

1. Because of technology, the data memory space is lim-
ited to 8 Kbytes then it does not require a 32 space
address

2. The R[30] register is not used because the algorithm is
not a recursive one

3. Only two of the three registers used for temporary vari-
ables are used

4. The Table 8 on page 7 show the need for the different
memories.

5. The figure 6 on page 7 show an evaluation of the pipe-
line and the different suspensions of the pipeline (mem-
ory access conflict, RBW (Read Before Write) and
branch)

6. The MUL instruction take 30 percent of the program
execution.

TABLE 8. study 1 : used memories

1,9 K bytes | 143 bytes

154

FIGURE 6. study 1 : pipeline evaluation
program

] memory access conflict

| Read Before Write
: branch

number of suspension machine cycle

According to these observations, we decide to realise
new simulations with the following modifications at differ-
ent levels :

1. At the C_Card source level (study 2) :

to replace MUL instruction by Left Shift Instruction
when it’s possible.

2. At the model of programming level (study 3) :

The new model of programming is described in the
Table 9 on page 7.

3. At the architecture of the micromodule level (study 4) :

the new micromodule has got a data bus and an instruc-
tion bus.

TABLE 9. study 3 : model of programming
R[0] =0
R[1]..R[26] Variables of the C_Card program
R[27] Return value
R[28]..R[29] | Temporary variables
R[30] Stack pointer
R[31] Return address

These new studies show several improvements :

* The study 2 is 8 percent faster than the first study
(important decrease of number of suspension cycle
(Read before write)).

¢ The study 3 is 7 percent faster than the first study and
present a better compactness of code (1,6 Kbytes) and
uses less RAM (120 bytes)

* The study 4 only is 1 percent faster than the first study.
We realize a last simulation which combines both the

study 2 and 3. The different results are shown in the follow-

ing table :

TABLE 10.

results

study 2

1,84 sec

19K

143

study 3

1,86 sec

16K

120

TABLE 10. results

study 4

1,98 sec 19K 143
study5 |1,56sec |1,6K 120

This short example illustrates the interest of OCEAN as
a general purpose tool for designing new applications and
related hardware in the smart card area.

5. Conclusion - Perspectives

There is a direct use of the OCEAN system because
OCEAN is a part of the European project called CAS-
CADE (ESPRIT n°8670). The goal of this project is to
define a new micromodule based on a 32 bits RISC archi-
tecture. The different partners are : Gemplus Card Interna-
tional : a smart card manufacturer, Texas Instruments,
ARM (Advanced RISC Machine), Domain Dynamics Lim-
ited (for biometric applications), Neural Computer Sci-
ences, UCL (Catholic University of Louvain - Belgium) for
cryptographic applications and RD2P (University of Lille).

Our work consist in to find hardware or software solu-
tions to introduce evoluate applications such biometric,
cryptographic applications in a micromodule based on an
ARM core risc. The use of OCEAN is an important element
to define a new architecture of smart card for future evolu-
ate applications. We have outlined the specific context of
the card leading to OCEAN. There are many other domains
where a microprocessor chip will always execute the same
program (toys, printers, process control devices etc. ...).
The OCEAN approach and methodology will probably
benefit these domains.

6. References

[11 T. Alexandre, “La compression de données dans la
carte & microprocesseur”, Publication LIFL, décembre
1993.

[2] P. Bakowski, A. Pawlak, “LIDO-A Silicon Compiler
Preprocessor”’, EUROMICRO Conf., Venice 1986.

[3] P. Bakowski, “Mode d’emploi de LIDO”, Document
LIFL, 1987.

[4] M. Barbacci, “Instruction Set Processor Specifica-
tions (ISPS) : The Notation and Its Applications, IEEE
Transactions on computers, vol. C30, N°1, Janvier 1981.

[5] Olivier Caron, G. Grimonprez, “O.CE.AN. : lan-
gage de spécifications d’architectures ”, Publication LIFL,
juin 93.

[6] Olivier Caron, V. Cordomnier, G. Grimonprez,
“OCEAN : a hardware and software tool for design of
future smart cards”, Barcelona, Euromicro’93.

[7]1 O. Caron, G. Grimonprez, “O.C.EA.N. : A C com-
piler for new smart card applications”, International Con-

155

ference in Compiler Construction, CC’94, Edinburgh, avril
1994.

[8] O. Caron “Méthodologies de conception et d’évalu-
ations d’architectures RISC adaptées aux futures cartes a
microprocesseur”, Thesis 1994.

[9] V. Cordonnier, G. Grimonprez, R. Beuscart, “Smart
Cards and Portable Data Files: a glance at the future.”,
Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Vol 13, NO3, 1991, page
1387.

[10] V. Cordonnier, “Smart Cards: present and future
applications and techniques”, Electronics & communica-
tion engineering journal, Octobre 1991.

[11] V.Cordonnier, “Assessing the future of smart
cards”, Proc. of the CardTech’92, Washington, DC, avril
92.

(12}, J. McCrindle, “Smart Cards”, IFS Publications/
Springer-Verlag, 1990.

[13] E. Gordons, G. Grimonprez, “A card as element of
a distributed database”, IFIP WG8.4 Workshop, Ottawa
1992.

[14] G. Grimonprez, P. Paradinas, “A new approach in
code development: C-Card and Cossack”, Card-Tech 1991.

[15] G. Grimonprez, “Etude et réalisation d’une carte a
micro-processeur intégrée aux systémes de gestion de bases
de données”, Mémoire d’habilitation, Février 1992.

[16] M.P. Haye, “The problematic of designing an infor-
mation system using smart cards”, Inforsid’92, Clermont-
Ferrand, 1992

[17] JL. Hennessy, D. Patterson, “Architecture des
ordinateurs : une approche quantitative”, Mc Graw-Hill.

[18] Proceedings of the IFIP WG 10.2 Ninth Interna-
tional Symposium on “Computer Hardware Description
Languages and their Applications”, Washington D.C., 19-
21 Juin 89

[19] Normes internationales ISO, 7816-4, “Commandes
d’échanges”.

[20] S.P. Levitan, AR. Martello, RM. Owens, M.J.
Irwin, “Using VHDL as a language for synthesis of CMOS
VLSI circuits”, Juin 1989.

[21] T. Peltier “Operating System for nomadic
object”, APPLICA’93.

[22] M. Ugon,”Le futur de la carte & puce”, Cartes’93,
Octobre 1993.

